НАСЛЕДСТВЕННОСТЬ

НАСЛЕДСТВЕННОСТЬ присущее всем
организмам свойство повторять в ряду поколений одинаковые признаки и особенности
развития, обусловленно передачей в процессе размножения от одного поколения
к другому материальных структур клетки, содержащих программы развития из
них новых особей Тем самым H обеспечивает преемственность морфол , физиот
и биохим организации живых существ характера их индивидуального развития
или онтогенеза Как общебиологич явление H - важнейшее условие существования
дифференцированных форм жизни, невозможных без относит постоянства признаков
организмов, хотя оно нарушается изменчивостью - возникновением различий
между организмами Затрагивая самые разнообразные признаки на всех этапах
онтогенеза организмов, H проявляется в закономерностях наследования признаков,
т е передачи их от родителей потомкам.


Иногда термин "Н " относят к передаче
от одного поколения другому инфекционных начал (т н инфекционная H ) или
навыков обучения, образования традиций (т н социальная или сигнальная,
H ) Подобное расширение понятия H за пределы его биологич и эволюционной
сущности спорно Лишь в случаях, когда инфекционные агенты способны взаимодействовать
с клетками хозяина вплоть до включения в их генетич аппарат, отделить инфекционную
H от нормальной затруднительно У словные рефлексы не наследуются,
а заново вырабатываются каждым поколением однако роль H в скорости закрепления
условных рефлексов и особенностей поведения бесспорна Поэтому в сигнальную
H входит компонент биологич H.


Попытки объяснения явлений H относящиеся
к глубокой древности (Гиппократ, Аристотель и др ), представляют
лишь историч интерес Только вскрытие сущности полового размножения позволило
уточнить понятие H и связать ее с определенными частями клетки К сер 19
в благодаря многочисленным опытам по гибридизации растений (И Г Keльрейтер
и
др ) накапливаются данные о закономерностях H В 1865 Г Мендель
в
ясной математич форме обобщил результаты своих экспериментов по гибридизации
гороха Эти обобщения позднее получили назв Менделя законов и легли
в основу учения о H - менделизма Почти одновременно были сделаны
попытки умозрительно понять сущность H В KH "Изменения домашних животных
и культурных растений" Ч Дарвин (1868) предложил свою "временную
гипотезу пангенезиса", согласно к рой от всех клеток организма отделяются
их зачатки - геммулы, к рые, двигаясь стоком крови оседают в половых клетках
и образованиях служащих для бесполого размножения (почки и др ) T о , получалось,
что половые клетки и почки состоят из громадного количества геммул При
развитии организма геммулы превращаются в клетки того же типа, из к рых
они образова лись В гипотезе пангенезиса объединены неравноценные
представления о наличии в половых клетках особых частиц, определяющих последующее
развитие особи о переносе их из клеток тела в половые.


Первое положение было плодотворным
и привело к совр. представлениям о корпускулярной H. Второе, дававшее основание
для представления о наследовании приобретённых признаков, оказалось неверным.
Умозрит. теории H. развивали также Ф. Галътон, К. Негели, X.
Де
Фриз.



Наиболее детализированную спекулятивную
теорию H. предложил А. Вейсман (1892). Основываясь на накопившихся
к тому времени данных по оплодотворению, он признавал наличие в
половых клетках особого вещества-носителя H.- зародышевой плазмы. Видимые
образования клеточного ядра - хромосомы - Вейсман считал высшими
единицами зародышевой плазмы - идантами. Иданты состоят из и д, располагающихся
в хромосоме в виде зёрен в линейном порядке. Иды состоят из детерминант,
определяющих при развитии особи сорт клеток, и б и оф о р, обусловливающих
отдельные свойства клеток. Ида заключает в себе все детерминанты, нужные
для построения тела особи данного вида. Зародышевая плазма содержится лишь
в половых клетках; соматические, или клетки тела, лишены её. Чтобы объяснить
это коренное различие, Вейсман предполагал, что в процессе дробления оплодотворённого
яйца осн. запас зародышевой плазмы (а значит, и детерминант) попадает в
одну из первых клеток дробления, к-рая становится родоначальной клеткой
т. н. зародышевого пути. В остальные клетки зародыша в процессе
"неравнонаследст-венных делений" попадает лишь часть детерминант; наконец,
в клетках останутся детерминанты одного сорта, определяющие характер и
свойства именно этих клеток. Существенное свойство зародышевой плазмы -
её большое постоянство. Теория Вейсмана оказалась ошибочной во MH. деталях.
Однако его идея о роли хромосом и о линейном расположении в них элементарных
единиц H. оказалась верной и предвосхитила хромосомную теорию H. (см. ниже).
Логич. вывод из теории Вейсмана - отрицание наследования приобретённых
признаков. Во всех умозрит. теориях H. можно обнаружить отд. элементы,
нашедшие в дальнейшем подтверждение и более полное развитие в сложившейся
в нач. 20 в. генетике. Важнейшие из них: а) выделение в организме
отд. признаков или свойств, наследование к-рых может быть проанализировано
соответств. методами; б) детерминация этих свойств особыми дискретными
единицами H., локализованными в структурах клетки (ядра) (Дарвин называл
их геммулами, Де Фриз - пангенами, Вейсман - детерминантами). В совр. генетике
общепринятым стал предложенный В. Иогансеном (1909) термин ген.


Особняком стояли попытки установления
закономерностей H. статистич. методами. Один из создателей биометрии-
Ф.
Гальтон применил разработанные им методы учёта корреляции и регрессии для
установления связи между родителями и потомками. Он сформулировал след,
законы H. (1889): регрессии, или возврата к предкам, и т. н. анцестральной
H., т. е. доли H. предков в H. потомков. Законы носят статистич. характер,
применимы лишь к совокупностям организмов и не раскрывают сущности и причин
H., что могло быть достигнуто только с помощью экспериментального изучения
H. разными методами и прежде всего гибридологическим анализом, основы
к-рого были заложены ещё Менделем. Так были установлены закономерности
наследования качеств, признаков: моногибридное - различие между скрещиваемыми
формами зависит лишь от одной пары генов, дигибридное - от двух, полигибридное
- от многих. При анализе наследования количеств, признаков отсутствовала
чёткая картина расщепления, что давало повод выделять особую, т. н. слитную
H. и объяснять её смешением наследств, плазм скрещиваемых форм. В дальнейшем
гибридологач. и биометрич. анализ наследования количеств, признаков показал,
что и слитная H. сводится к дискретной, но наследование при этом полигенное
(см. Полимерия). В этом случае расщепление трудно обнаружить, т.
к. оно происходит по MH. генам, действие к-рых на признак осложняется сильным
влиянием условий внешней среды. T. о., хотя признаки можно разделять на
качественные и количественные, термины "качественная" и "количественная"
H. не оправданы, т. к. обе категории H. принципиально одинаковы. Развитие
цитологии
привело
к постановке вопроса о материальных основах H. Впервые мысль о роли ядра
как носителя H. была сформулирована О. Гертвигом
(1884) и Э. Страсбургером
(1884) на основании изучения процесса оплодотворения. T. Бовери
(1887) установил индивидуальность хромосом и развил гипотезу о их качественном
различии. Он же, а также Э. ван Бенеден
(1883) установили уменьшение
кол-ва хромосом вдвое при образовании половых клеток в мейозе. Амер.
учёный У. Сеттон (1902) дал цито-логич. объяснение закону Менделя о независимом
наследовании признаков. Однако подлинное обоснование хромосомной теории
H. было дано в работах T. Моргана
и его школы (начиная с 1911),
в к-рых было показано точное соответствие между генетич. и цито-логич.
данными. В опытах на дрозофиле было установлено нарушение независимого
распределения признаков - их сцепленное наследование. Это явление было
объяснено сцеплением генов, т. е. нахождением генов, определяющих эти признаки,
в одной определённой паре хромосом. Изучение частоты рекомбинаций
между
сцепленными генами (в результате кроссинговера) позволило составить
карты расположения генов в хромосомах (см. Генетические карты хромосом).
Кол-во
групп сцепленных генов оказалось равным кол-ву пар хромосом, присущих данному
виду. Важнейшие доказательства хромосомной теории H. были получены при
изучении н а с л е д о-вани я, сцепленного с полом. Ранее цитологи открыли
в хромосомных наборах ряда видов животных особые, т. н.
половые хромосомы,
к-рыми самки отличаются от самцов. В одних случаях самки имеют 2 одинаковые
половые хромосомы (XX), а самцы - разные (XY), в других - самцы - 2 одинаковые
(XX, или ZZ), а самки - разные (XY, или ZW). Пол с одинаковыми половыми
хромосомами наз. гомогаметным, с разными - гетерогаметным. Женский пол
гомогаметен, а мужской гетерогаметен у нек-рых насекомых (в т. ч. у дрозофилы)
и всех млекопитающих. Обратное соотношение - у птиц и бабочек. Ряд признаков
у дрозобилы наследуется в строгом соответствии с передачей потомству Х-хромосом.
Самка дрозофилы, проявляющая рецессивный признак (см. Рецессивность),
напр, белую окраску глаз, в силу гомозиготности по этому гену, находящемуся
в Х-хро-мосоме, передаёт белую окраску глаз всем сыновьям, т. к. они получают
свою Х-хромосому только от матери. В случае гетерозиготности по рецессивному
сцепленному с полом признаку самка передаёт его половине сыновей. При противоположном
определении пола (самцы XX, или ZZ; самки - XY, или ZW) особи мужского
пола передают сцепленные с полом признаки дочерям, получающим свою Х( =
Z) хромосому от отца. Иногда в результате нерасхождения половых хромосом
при мейозе возникают самки строения XXY и самцы XYY. Возможны также случаи
соединения Х-хромосом концами; тогда самки передают сцепленные Х-хромосомы
своим дочерям, у к-рых и проявляются сцепленные с полом признаки. Сыновья
же похожи на отцов (такое наследование наз. г о-логеническим). Если наследуемые
гены находятся в Y-хромосоме, то определяемые ими признаки передаются только
по мужской линии - от отца к сыну (такое наследование наз. г о л а н д-р
и ч е с к и м). Хромосомная теория H. вскрыла внутриклеточные механизмы
H., дала точное и единое объяснение всех явлений наследования при половом
размножении, объяснила сущность изменений H., т. е. изменчивости.


Первенствующая роль ядра и хромосом
в H. не исключает передачи нек рых признаков и через цитоплазму, в к-рой
обнаружены структуры, способные к самовоспроизведению (см. Наследственность
цитоплазматическая).
Единицы цитоплазматич. (нехромосомной) H. отличаются
от хромосомных тем, что они не расходятся при мейозе. Поэтому потомство
при нехромосомной H. воспроизводит признаки только одного из родителей
(чаще матери). T. о., различают ядерную H., связанную с передачей наследств.
признаков, находящихся в хромосомах ядра (иногда её наз. хромосомной H.),
и внеядерную, зависящую от передачи самовоспроизводящихся структур цитоплазмы.
Ядерная H. реализуется и при вегетативном размножении, но не сопровождается
перераспределением генов, что наблюдается при половом размножении, а обеспечивает
константную передачу признаков из поколения в поколение, нарушаемую только
соматическими
мутациями.



Применение новых физич. и химич. методов,
а также использование в качестве объектов исследования бактерий и вирусов
резко повысили разрешающую способность генетич. экспериментов, привели
к изучению H. на молекулярном уровне и бурному развитию молекулярной
генетики.
Впервые H. К. Кольцов (доложено в 1927, опубликовано в 1928,
1935) выдвинул и обосновал представление о молекулярной основе H. и о матричном
способе размножения "наследственных молекул". В 40-х гг. 20 в. была экспериментально
доказана генетическая роль дезоксирибонуклеиновой кислоты (ДНК),
а в 50-60-х гг. установлена её молекулярная структура и выяснены принципы
кодирования генетич. информации (см. Генетический код).


По мере изучения H. на субклеточном
и молекулярном уровне углублялось и уточнялось представление о гене. Если
в опытах по наследованию различных признаков ген постулировался как элементарная
неделимая единица H., а в свете данных цитологии его рассматривали как
изолированный участок хромосомы, то на молекулярном уровне ген - входящий
в состав хромосомы участок молекулы ДНК, способный к самовоспроизведению
и имеющий специфич. структуру, в к-рой закодирована программа развития
одного или неск. признаков организма. В 50-х гг. на микроорганизмах (амер.
генетик С. Бензер) было показано, что каждый ген состоит из ряда различных
участков, к-рые могут мутировать и между к-рыми может происходить кроссин-говер.
Так подтвердилось представление о сложной структуре гена, развивавшееся
ещё в 30-х гг. А. С. Серебровским и H. П. Дубининым на основе
данных гене-тич. анализа.


В 1967-69 был осуществлён синтез вирусной
ДНК вне организма, а также химич. синтез гена дрожжевой аланино-вой транспортной
РНК. Новой областью исследования стала H. соматич. клеток в организме и
в культурах тканей. Открыта возможность экспериментальной гибридизации
соматич. клеток разных видов. В связи с достижениями молекулярной биологии
явления
H. приобрели ключевое значение для понимания ряда биологич. процессов,
а также для MH. вопросов практики. Ещё Дарвину было ясно значение H. для
эволюции организмов. Установление дискретной природы H. устранило одно
из важных возражений против дарвинизма: при скрещивании особей, у к-рых
появились наследств, изменения, последние должны якобы "разбавляться" и
ослабевать в своём проявлении. Однако, в соответствии с законами Менделя,
они не уничтожаются и не смешиваются, а вновь проявляются в потомстве в
определённых условиях. В популяциях явления H. предстали как сложные
процессы, основанные на скрещиваниях между особями, отборе, мутациях,
генетико-ав-томатических процессах
и др. На это впервые указал С. С.
Четвериков
(1926),
экспериментально доказавший накопление мутаций внутри популяции. И. И.
Шмальгаузен (1946) выдвинул положение о "мобилизационном резерве
наследственной изменчивости" как материале для творческой деятельности
естественного
отбора
при изменении условий внешней среды. Показано значение разных
типов изменений H. в эволюции. Эволюция понимается как постепенное и многократное
изменение H. вида.
В то же время H., обеспечивающая постоянство
видовой организации, - это коренное свойство жизни, связанное с физ.-хим.
структурой элементарных единиц клетки, прежде всего её хромосомного аппарата,
и прошедшее длит, период эволюции. Принципы организации этой структуры
(генетический код), по-видимому, универсальны для всех живых существ и
рассматриваются как важнейший атрибут жизни.


Под контролем H. находится и онтогенез,
начинающийся с оплодотворения яйца и осуществляющийся в конкретных условиях
среды. Отсюда различие между совокупностью генов, получаемых организмом
от родителей, - генотипом и комплексом признаков организма на всех
стадиях его развития - фенотипом. Роль генотипа и среды в формировании
фенотипа может быть различна.


Но всегда следует учитывать генотипи-чески
обусловленную норму реакции организма на влияния среды. Изменения
в фенотипе не отражаются адекватно на генотипич. структуре половых клеток,
поэтому традиционное представление о наследовании приобретённых признаков
отвергнуто, как не имеющее фак-тич. основы и неправильное теоретически.
Механизм реализации H. в ходе развития особи, по-видимому, связан со сменой
действия разных генов во времени и осуществляется при взаимодействии ядра
и цитоплазмы, в к-рой происходит синтез тех или иных белков на основе программы,
записанной в ДНК и передающейся в цитоплазму с информационной РНК.


Закономерности H. имеют огромное значение
для практики с. х-ва и медицины. На них основываются выведение новых и
совершенствование существующих сортов растений и пород животных. Изучение
закономерностей H. привело к научному обоснованию применявшихся ранее эмпирически
методов селекции и к разработке новых приёмов (экспериментальный мутагенез,
гетерозис, полиплоидия
и др.). Данные генетики человека показали,
что довольно часты гены, определяющие развитие разнообразных уродств и
наследственных
заболеваний:
наследственных болезней обмена, психических и др. (см.
"Молекулярные
болезни
" Хромосомные болезни, Медицинская генетика).
Уменьшению
вероятности появления в семьях наследственно больных детей призваны способствовать
медико-генетические консультации.
Ранняя диагностика наследств,
заболеваний позволяет применить необходимые методы лечения. Существенно
важен учёт H. в реакции разных людей на лекарства и др. химич. вещества,
а также в иммунологич. реакциях. Бесспорна роль молекулярно-ге-нетич. механизмов
в этиологии злокачеств. опухолей.


Явления H. предстают в разной форме
в зависимости от уровня жизни, на к-ром они изучаются (молекула, клетка,
организм, популяция). Но в конечном счёте H. обеспечивается самовоспроизведением
материальных единиц H. (генов и цито-плазматич. элементов), молекулярная
структура к-рых известна. Закономерный матричный характер их ауторепродук-ции
нарушается мутациями отд. генов или перестройками генетич. систем в целом.
Всякое изменение в ауторепродуцирующемся элементе наследуется константно.


Лит.: Вильсон Э., Клетка и ее
роль в развитии и наследственности, пер. с англ., т. 1 - 2, М.-Л., 1936-40;
Морган Т., Избранные работы по генетике, пер. с англ., М.- Л., 1937; Сэджер
P, Раин Ф., Цитологические и химические основы наследственности, пер. с
англ., M., 1964; Сталь Ф., Механизмы наследственности, пер. с англ., M.,
1966; Л о б а ш е в M. E., Генетика, 2 изд., Л., 1967; Г а и с и н ов и
ч A. E., Зарождение генетики, M , 1967; Уотсон Д ж. Д., Молекулярная биология
гена, пер. с англ., M , 1967; Успехи современной генетики. Сб. ст., в.
1 - 4, M., 1967 - 72; Классики советской генетики. Сб. ст., Л., 1968; Дубинин
H. П., Общая генетика, M., 1970; И ч а с M., Биологический код, пер. с
англ., M , 1971; M е т т л е р Л., Г P е г г Т., Генетика популяций и эволюция,
пер., с англ., M., 1972; Weber E , Mathematische Grundlagen der Genetik,
Jena, 1967; Sinnott E, Dunn L., Dobzhansky Th., Principles of genetics,
N. Y., 1958.


См. также лит. при статьях Генетика,
Дарвинизм, Менделизм, Молекулярная генетика. П.
Ф. Рокицкий.




А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я