МАГНИТНОЕ ПОЛЕ

МАГНИТНОЕ ПОЛЕ силовое
поле, действующее на движущиеся электрич. заряды и на тела, обладающие
магнитным моментом,
независимо от состояния их движения. М. п. характеризуется
вектором магнитной индукции
В,
к-рый определяет: силу, действующую
в данной точке поля на движущийся электрический заряд (см. Лоренца сила);
действие М. п. на тела, имеющие магнитный момент, а также другие свойства
М. п.


Впервые термин "М. п." ввёл в 1845 М. Фарадей,
считавший,
что как электрич , так и магнитные взаимодействия осуществляются посредством
единого материального поля. Классич. теория электромагнитного поля была
создана Дж. Максвеллом (1873), квантовая теория - в 20-х гг. 20
в. (см. Квантовая теория поля).


Источниками макроскопич. М. п. являются
намагниченные тела, проводники с током и движущиеся электрически заряженные
тела. Природа этих источников едина: М. п. возникает в результате движения
заряженных микрочастиц (электронов, протонов, ионов), а также благодаря
наличию у микрочастиц собственного (спинового) магнитного момента (см.
Магнетизм).


М.. п. электрического тока определяется
Био
- Савара законом;
М. п. тел, имеющих магнитный момент, - формулами,
описывающими поле магнитного диполя (в общем случае - мулътиполя).


Переменное М. п. возникает также при изменении
во времени электрического поля. В свою очередь, при изменении во
времени М. п. возникает электрич. поле. Полное описание электрич. и магнитного
полей в их взаимосвязи дают Максвелла уравнения. Для характеристики
М. п. часто вводят силовые линии поля (линии магнитной индукции). Ка-сательная
в каждой точке такой линии имеет направление вектора В в этой точке. Числом
силовых линий, проходящих через единичную перпендикулярную к ним площадку,
количественно определяют индукцию поля. В местах повышенных значений В
линии
индукции сгущаются, в тех же местах, где поле слабее, линии расходятся
(см., напр., рис. 1).


Для М. п. наиболее характерны след. проявления.


1. В постоянном однородном М. п. на магнитный
диполь с магнитным моментом рдействует вращающий момент
N
=
В] (так, магнитная стрелка в М. п. поворачивается по полю; виток с
током I, также обладающий магнитным моментом, стремится занять положение,
при котором его плоскость была бы перпендикулярна линиям индукции; атомный
диполь прецессирует вокруг силовой линии с характеристической частотой;
рис. 1, а).


2. В постоянном однородном М. п. действие
силы Лоренца приводит к тому, что траектория движения электрич. заряда
имеет вид спирали с кривизной, обратно пропорциональной скорости (рис.
1, б). Искривление траектории электрич. зарядов под действием силы
Лоренца сказывается, напр., в перераспределении тока по сечению проводника
При внесении его в М. п. Этот эффект лежит в основе гальваномагнитных,
термомагнитных и др. родственных им явлений.


3. В пространственно неоднородном М. п.
на магнитный диполь действует сила F, перемещающая диполь в направлении
градиента поля: F = grad (pВ);
так, пучок атомов,
содержащий атомы с противоположно ориентированными магнитными моментами,
в неоднородном М. п. разделяется на два расходящихся пучка (рис. 1, в).
Рис. 1. я- действие однородного постоянного
магнитного поля на магнитную стрелку, виток с током I и атомный диполь
(е- электрон атома); б -действие однородного постоянного магнитного поля
на свободно движущиеся электрические заряды a (их траектория в общем случае
имеет вид спирали); в-разделение пучка магнитных диполей в неоднородном
магнитном поле; г -возникновение тока индукции в витке при усилении внешнего
магнитного поля В (стрелками показано направление тока индукции и создаваемого
магнитного поля Bq - электрический заряд, v - скорость заряда.



4. М. п., непостоянное во времени, оказывает
силовое действие на покоящиеся электрич. заряды и приводит их в движение;
возникающий при этом в контуре ток Iп. ВИндукция
электромагнитная
).


Магнитная индукция В определяет
среднее макроскопич. М. п., создаваемое в данной точке поля как токами
проводимости (движением свободных носителей зарядов), так и имеющимися
намагниченными телами (ионами и атомами вещества). М. п., созданное токами
проводимости и не зависящее от магнитных свойств вещества, характеризуется
вектором
напряжённости магнитного поля Н = = В - 4Пи*J или Н
=
(В/nJ (соответственно в СГС системе единиц
и
Международной
системе единиц).
В этих соотношениях вектор
J - намагниченность
вещества
(магнитный момент единицы его объёма), nмагнитная постоянная.


Отношение n = В/nмагнитные свойства вещества, наз, его магнитной проницаемостью. В
зависимости от величины ц вещества делят на диамагнетики (n<1)
и парамагнетики n>1), вещества с n>>1 наз. ферромагнетиками.


Объёмная плотность энергии М. п. в отсутствии
ферромагнетикоэ: W2/8Пи или W= BH/8Пи (в единицах СГС); W= nn2/2
или ВН/2 (в единицах СИ). В общем случае, где пределы интегрирования
определяются начальными и конечными значениями магнитной индукции В,
сложным
образом зависящей от поля Н.

1512-10.jpg

Для измерения характеристик М. п. и магнитных
свойств веществ применяют различного типа магнитометры. Единицей
индукции М. п. в системе единиц СГС является гаусс (гс), в Международной
системе единиц - тесла (тл), 1 тл = 104 гс. Напряжённость
измеряется, соответственно, в эрстедах (э) и амперах на метр(а/м),
1 а/м = 4Пи/103 э0,01256э; энергия М. п.- в эрг/см3или
дж/м3',
1
дж/м3=
10 эрг/см3.



Магнитные поля в природе чрезвычайно
разнообразны как по своим масштабам, так и по вызываемым ими эффектам.
М. п. Земли, образующее земную магнитосферу, простирается до расстояния
в 70-80 тыс. км в направлении на Солнце и на многие миллионы км
в
противоположном направлении (см. Земля). У поверхности Земли М.
п. равно в среднем 0,5 гс, на границе магнитосферы 10-3
гс. Геомагнитное поле экранирует поверхность Земли и биосферу от
потока заряженных частиц солнечного ветра и частично космических
лучей.
Влияние самого геомагнитного поля на жизнедеятельность организмов
изучает магнитобиология. В околоземном пространстве М. п. образует
магнитную ловушку для заряженных частиц высоких энергий - радиационный
пояс Земли.
Содержащиеся в ра-диац. поясе частицы представляют значит,
опасность при полётах в космос. Происхождение М. п. Земли связывают с конвективными
движениями проводящего жидкого вещества в земном ядре (см. Земной магнетизм).


Непосредств. измерения при помощи космич.
аппаратов показали, что ближайшие к Земле космич. тела - Луна, планеты
Венера и Марс не имеют собственного М. п., подобного земному. Из др. планет
Солнечной системы лишь Юпитер и, по-видимому, Сатурн обладают собственными
М. п., достаточными для создания планетарных магнитных ловушек. На Юпитере
обнаружены М. п. до 10 гс и ряд характерных явлений (магнитные бури,
синхротронное
радиоизлучение и др.), указывающих на значительную роль М. п. в планетарных
процессах.


Межпланетное М. п.- это гл. обр. поле солнечного
ветра (непрерывно расширяющейся плазмы солнечной короны). Вблизи орбиты
Земли межпланетное поле 10-4-10-5 гс. Силовые линии
регулярного межпланетного М. п. имеют вид идущих от Солнца раскручивающихся
спиралей (их форма обусловлена сложением радиального движения плазмы и
вращения Солнца). М. п. межпланетной плазмы имеет секторную структуру:
в одних секторах оно направлено от Солнца, в других - к Солнцу. Регулярность
межпланетного М. п. может нарушаться из-за развития различных видов плазменной
неустойчивости, прохождения ударных волн и распространения потоков, быстрых
частиц, рождённых солнечными вспышками (см. Космическая магнитогидродинамика).


Во всех процессах на Солнце - вспышках,
появлении пятен и протуберанцев, рождении солнечных космич. лучей М. п.
играет важнейшую роль (см. Солнечный магнетизм). Измерения, основанные
на эффекте Зеемана, показали, что М. п. солнечных пятен достигает неск.
тыс. гс, протуберанцы удерживаются полями 10-100 гс (при
среднем значении общего М. п. Солнца 1 гс). Удалённость звёзд не
позволяет пока наблюдать у них М. п. типа солнечных. В то же время более
чем у двухсот т. н. магнитных звёзд обнаружены аномально большие
ноля (до 3,4*104 гс). Поля 107 гс измерены
у неск. звёзд - белых карликов. Особенно большие (1010-1012гс)
М.
п. должны быть, по совр. представлениям, у нейтронных звёзд.
С М.
п. космич. объектов тесно связано ускорение заряженных частиц (электронов,
протонов, ядер) до релятивистских скоростей (близких к скорости света).
При движении таких частиц в космич. М. п. возникает электромагнитное
синхротронное
излучение.
Индукция межзвёздного М. п., определённая по Зеемана
эффекту
(в радиолинии 21 см спектра водорода) и по Фарадея
эффекту
(вращению плоскости поляризации электромагнитного излучения
в М. п.), составляет всего 5*10-6 гс. Однако общая энергия
межзвёздного (галактического) М. п. превышает энергию хаотического движения
частиц межзвёздного газа и сравнима с энергией космических лучей.


В явлениях микромира роль М. п. столь же
существенна, как и в космич. масштабах. Это объясняется существованием
у всех частиц - структурных элементов вещества (электронов, протонов, нейтронов)
магнитного момента, а также действием М. п. на движущиеся электрические
заряды. Если суммарный магнитный момент М частиц, образующих атом
или молекулу, равен нулю, то такие атомы и молекулы наз. диамагнитными.
Атомы (ионы, молекулы) с М не равно 0 наз. парамагнитными. У всех
атомов (как с М = 0, так и с М не равно 0) при наложении
внешнего М. п. возникает индуцированный магнитный момент, направленный
навстречу намагничивающему полю (см. Диамагнетизм). Однако у парамагнитных
атомов в М. п. этот эффект маскируется преим. поворотом их магнитных моментов
по полю (см. Парамагнетизм). У парамагнетиков и ферромагнетиков
намагниченность увеличивается с ростом внешнего М. п. (до состояния насыщения).
Вид кривых намагничивания ферромагнетиков (и антиферромагнетиков)
в значит, степени определяется магнитным взаимодействием атомных носителей
магнетизма. Это взаимодействие обусловливает также большое разнообразие
типов атомной магнитной структуры у ферримагнетиков (ферритов).


Внутрикристаллич. М. п., измеренное в ферримагнетиках
(ферритах-гранатах) на ядрах ионов железа, оказалось 5*105гс,
на
ядрах, редкоземельного металла диспрозия 8*106гс.
На
расстоянии порядка размера атома ( 10-8 см)
М. п. ядра
составляет 50 гс. Внешнее М. п. и внутриатомные М. п., создаваемые
электронами атома и его ядром, расщепляют энергетич. уровни атома (Зеемана
эффект); в результате спектры атомов приобретают сложное строение (см.
Тонкая
структура
и Сверхтонкая структура).
Расстояния между зеемановскими
подуровнями энергии (и соответствующими спектральными линиями) пропорциональны
величине М. п., что позволяет спектральными методами определять значение
М. п С возникновением зеемановских подуровней энергии в М. п. и с квантовыми
переходами между ними связано ещё одно важное физ. явление - резонансное
поглощение веществом радиоволн (явление магнитного резонанса).
Зависимость
положения и формы линий спектра магнитного резонанса от особенностей взаимодействия
молекул, атомов, ионов, а также ядер в жидкостях и твёрдых телах даёт возможность
исследовать при помощи
электронного парамагнитного резонанса (ЭПР)
и ядерного магнитного резонанса (ЯМР) структуру жидкостей, кристаллов
и сложных молекул, кинетику химических и биохимических реакций.


М. п. способно заметно влиять на оптич.
свойства среды и процессы взаимодействия электромагнитного излучения с
веществом (см. Фарадея эффект, Магнитооптика), вызывать гальваномагнитные
явления
и термомагнитные явления в проводниках и полупроводниках.
М. п. оказывает влияние на сверхпроводимость веществ: при достижении
определённой величины М. п. разрушает сверхпроводимость (см. Критическое
магнитное поле).
М. п. при намагничивании ферромагнитных тел изменяет
их форму и упругие свойства (см. Магнитострикция). Особые свойства
в М. п. приобретает плазма. М. п. препятствует движению заряженных
частиц плазмы поперёк силовых линий поля (см. Магнитная гидродинамика).
Этот
эффект используется, напр., для термоизоляции плазмы и обеспечения её устойчивости
в установках для изучения свойств высокотемпературной плазмы.



Применение магнитных полей в науке и
технике. М. п. обычно подразделяют на слабые (до 500 гс), средние
(500 гс - 40 кгс), сильные (40 кгс - 1 Мгс) и
сверхсильные (св. 1 Мгс). На использовании слабых и средних М. п.
основана практически вся электротехника, радиотехника и электроника. В
науч. исследованиях средние М. п. нашли применение в ускорителях заряженных
частиц,
в Вильсона камере, искровой камере, пузырьковой камере и
др. трековых детекторах ионизующих частиц, в масс-спектрометрах, при
изучении действия М. п. на живые организмы и т. д. Слабые и средние М,
п. получают при помощи магнитов постоянных, электромагнитов, неохлаждаемых
соленоидов, магнитов сверхпровод ящих.


М. п. до 500 кгс широко применяются
в науч. и прикладных целях: в физике твёрдого тела для изучения энергетич.
спектров электронов в металлах, полупроводниках и сверхпроводниках; для
исследования ферро- и антиферромагнетизма, для удержания плазмы в МГД-генераторах
и двигателях, для получения сверхнизких темп-р (см. Магнитное охлаждение),
в
электронных микроскопах для фокусировки пучков электронов и т. д. Для получения
сильных М. п. применяют сверхпроводящие соленоиды (до 150-200
кгс, рис.
2), соленоиды, охлаждаемые водой (до 250 кгс, рис. 3), импульсные
соленоиды (до 1,6 Мгс,рис. 4). Силы, действующие на проводники с током
в сильных М. п., могут быть очень велики (так, в полях 250 кгс
механич.
напряжения достигают 4*108 н/м2,
т. е. предела
прочности меди). Эффект давления М. п. учитывают при конструировании электромагнитов
и соленоидов, его используют для штамповки изделий из металла. Предельное
значение поля, к-рое можно получить без разрушения соленоида, не превышает
0,9 Мгс.
Рис. 2. Сверхпроводящий соленоид
с обмоткой из сплава Nb - Zr на 30 кгс (рабочий объём диаметром 32 мм находится
при комнатной температуре): 1 - соленоид: 2 - жидкий гелий: 3 - жидкий
азот: 4 - азотный экран; 5 - кожух; 6 - заливная горловина.

Рис. 3. Схематический разрез водоохлаж-даемого
соленоида на 250 кгс (движение воды показано стрелками). 1-я секция имеет
массу 2 кг, потребляет мощность 0,4 Мвт и создаёт поле В45 кгс; 2-я секция - 16 кг, 2 Мвт и 65 кгс; 3-я секция - 1250 кг, 12 Mвm
и 140 кгс.

Рис. 4. Модель импульсного одновиткового
соленоида (длина 10 мм, диаметр отверстия 2 мм). Источник питания - батарея
конденсаторов на 2,4 кдж. Получаемые поля - до 1,6 Мгс.



Сверхсильные М. п. используют для получения
данных о свойствах веществ в полях св. 1 Мгс и при сопутствующих
им давлениях в десятки млн. атмосфер. Эти исследования позволят, в частности,
глубже понять процессы, происходящие в недрах планет и звёзд. Сверхсильные
М. п. получают методом направленного взрыва (рис. 5). Медную трубу, внутри
к-рой предварительно создано сильное импульсное М. п., радиально сжимают
давлением продуктов взрыва. С уменьшением радиуса R трубы величина
М. п. в ней возрастает 1/R2 (если магнитный поток через трубу
сохраняется). М. п., получаемое в установках подобного типа (т. н. взрывомагнитных
генераторах), может достигать неск. десятков Мгс. К недостаткам
этого метода следует отнести кратковременность существования М. п. (неск.
мксек),
небольшой
объём сверхсильного М, п. и разрушение установки при взрыве.
Рис. 5. Взрывомагнитный генератор.
Первичное импульсное поле создаётся разрядом батареи конденсаторов. Когда
поле достигает максимальной величины, осуществляется взрыв (ВВ - взрывчатое
вещество), приводящий к резкому возрастанию поля в медной трубе (ловушке
магнитного поля). Тригер применялся для синхронизации первичного импульсного
магнитного поля и детонации взрывчатого вещества.



Лит.: Ландау Л. Д. и Л и ф-шиц Е.
М., Теория поля, 6 изд., М., 1973 (Теоретическая физика, т. 2); Т а м м
И. Е., Основы теории электричества, 8 изд., М., 1966; Парселл Э., Электричество
и магнетизм, пер. с англ., М., 1971 (Берклеевский курс физики, т. 2); Карасик
В. Р., Физика и техника сильных магнитных полей, М., 1964; Монтгомери Б.,
Получение сильных магнитных полей с помощью соленоидов, пер. с англ., М.,
1971; Кнопфель Г., Сверхсильные импульсные магнитные поля, пер. с англ.,
М., 1972; Кольм Г., фриман А., Сильные магнитные поля, "Успехи физических
наук", 1966, т. 88. в. 4, с. 703; С а х а р о в А. Д., Взрывомагнитные
генераторы, там же, с. 725; Б и т т е р Ф., Сверхсильные магнитные поля,
там же, с. 735; Вайнштейн С. И., Зельдович Я. Б., О происхождении магнитных
полей в австрофизике, там же, 1972, т. 106, в. 3.

Л. Г. Асламазов, В. Р. Карасик, , С.
Б.Пикелънер.





А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я