Главная > База знаний > Большая советская энциклопедия > КОНДЕНСАЦИОННАЯ ЭЛЕКТРОСТАНЦИЯ

КОНДЕНСАЦИОННАЯ ЭЛЕКТРОСТАНЦИЯ

КОНДЕНСАЦИОННАЯ ЭЛЕКТРОСТАНЦИЯ (КЭС), тепловая паротурбинная электростанция, назначение
которой - производство электрич. энергии с использованием конденсационных
турбин.
На КЭС применяется органическое топливо:
твёрдое топливо, преимущественно уголь разных сортов в пылевидном состоянии,
газ, мазут и т. п. Тепло, выделяемое при сжигании топлива, передаётся в
котельном агрегате (парогенераторе) рабочему телу, обычно - водяному пару.
КЭС, работающую на ядерном горючем, называют атомной электростанцией
(АЭС)
или конденсационной АЭС (АКЭС). Тепловая энергия водяного пара преобразуется
в конденсационной турбине в механическую энергию, а последняя в электрич.
генераторе - в электрическую энергию. Отработавший в турбине пар конденсируется,
конденсат пара перекачивается сначала кон-денсатным, а затем питательным
насосами в паровой котёл (котлоагрегат, парогенератор). Т.о. создаётся
замкнутый пароводяной тракт: паровой котёл с пароперегревателем - паропроводы
от котла к турбине-турбина-конденсатор-конденсат-ный и питат.насосы-трубопроводы
питат. воды-паровой котёл.Схема пароводяного тракта является осн. технологич.
схемой паротурбинной электростанции и носит название тепловой схемы КЭС
(рис. 1).

1301-13.jpg


Для конденсации
отработавшего пара требуется большое кол-во охлаждающей воды с темп-рой
10-20 0С (ок. 10 м3/сек для турбин
мощностью 300 Мвт ). КЭС являются осн. источником электроэнергии
в СССР и большинстве пром. стран мира; на долю КЭС в СССР приходится 2
общей мощности всех тепловых электростанций страны. КЭС, работающие в энергосистемах
Советского Союза, наз. также ГРЭС.


Первые КЭС,
оборудованные паровыми машинами, появились в 80-х гг. 19 в. В нач. 20 в.
КЭС стали оснащать паровыми турбинами. В 1913 в России мощность всех КЭС
составляла 1,1 Гвт. Строительство крупных КЭС (ГРЭС) началось в
соответствии с планом ГОЭЛРО; Каширская ГРЭС и Шатурская электростанция
им.
В. И. Ленина были первенцами электрификации СССР. В 1972 мощность КЭС в
СССР составила уже 95 Гвт. Прирост электрич. мощности на КЭС СССР
составил ок. 8 Гвт за год. Возросла также единичная мощность КЭС
и установленных на них агрегатов. Мощность наиболее крупных КЭС к 1973
достигла 2,4-2,5 Гвт. Проектируются и сооружаются КЭС мощностью
4-5 Гвт (см. табл.). В 1967-68 на Назаров-ской и Славянской ГРЭС
были установлены первые паровые турбины мощностью 500 и 800 Мвт. Создаются
(1973) одновальные турбоагрегаты мощностью 1200 Мвт. За рубежом
наиболее крупные турбоагрегаты (двухзальные) мощностью 1300 Мвт устанавливаются
(1972-73) на КЭС Камберленд (США).


Осн. технико-экономич.
требования к КЭС - высокая надёжность, манёвренность и экономичность. Требование
высокой надёжности и манёвренности обусловливается тем, что производимая
КЭС электроэнергия потребляется сразу же, т. е. КЭС должна производить
столько электроэнергии, сколько необходимо её потребителям в данный момент.


Экономичность
сооружения и эксплуатации КЭС определяется удельными капиталовложениями
(110-150 руб. на установленный квт), себестоимостью электроэнергии
(0,2-0,7 коп./квт-ч), обобщающим показателем - удельными расчётными
затратами (0,5-1,0 коп./квт-ч). Эти показатели зависят от мощности
КЭС и её агрегатов, вида и стоимости топлива, режимов работы и кпд процесса
преобразования энергии, а также местоположения электростанции. Затраты
на топливо составляют обычно более половины стоимости производимой электроэнергии.
Поэтому к КЭС предъявляют, в частности, требования высокой тепловой экономичности,
т. е. малых удельных расходов тепла и топлива, высокого кпд.


Преобразование
энергии на КЭС производится на основе термодинамич. цикла Ренкина, в к-ром
подвод тепла воде и водяному пару в котле и отвод тепла охлаждающей водой
в конденсаторе турбины происходят при постоянном давлении, а работа пара
в турбине и повышение давления воды в насосах - при постоянной энтропии.


Общий кпд совр.
КЭС -35-42% и определяется кпд усовершенствованного термодинамич. цикла
Ренкина (0,5-0,55), внутр. относит, кпд турбины (0,8-0,9),механич. кпд
турбины (0,98-0,99), кпд электрич. генератора (0,98-0,99), кпд трубопроводов
пара и воды (0,97-0,99), кпд котлоагрегата (0,9-0,94).


Увеличение
кпд КЭС достигается гл. обр. повышением начальных параметров (начальных
давления и темп-ры) водяного пара, совершенствованием термодинамич. цикла,
а именно-применением промежуточного перегрева пара и регенеративного подогрева
конденсата и питат. воды паром из отборов турбины. На КЭС по технико-экономич.
основаниям применяют начальное давление пара до-критическое 13-14, 16-17
или сверхкритическое 24-25Мн/мг, начальную темп-ру свежего
пара, а также после промежуточного перегрева 540-570 "С. В СССР и за рубежом
созданы опытно-пром. установки с начальными параметрами пара 30-35 Мн/мгпри
600-650 0С. Промежуточный перегрев пара применяют обычно одноступенчатый,
на нек-рых зарубежных КЭС сверхкритич. давления - двухступенчатый. Число
регенеративных отборов пара 7-9, конечная темп-pa подогрева питат. воды
260-300 0С. Конечное давление отработавшего пара в конденсаторе
турбины 0,003-0,005 Мн/м2.


Часть вырабатываемой
электроэнергии потребляется вспомогат. оборудованием КЭС (насосами, вентиляторами,
угольными мельницами и т. д.). Расход электроэнергии на собственные нужды
пылеуголь-ной КЭС составляет до 7%, газомазутной - до 5%. Значит,
часть - около половины энергии на собственные нужды расходуется на привод
питат. насосов. На крупных КЭС применяют паротурбинный привод; при этом
расход электроэнергии на собств. нужды снижается. Различают кпд КЭС брутто
(без учёта расхода на собств. нужды) и кпд КЭС нетто (с учётом расходов
на собств. нужды). Энергегич. показателями, равноценными кпд, служат также
удельные (на единицу электроэнергии ) расходы тепла и условного топлива
с теплотой сгорания 29,3 Мдж/кг (7000 ккал/кг), равные для
КЭС 8,8 - 10,2 Мдж/квт-ч (2100 - 2450 ккал/квт-ч) и 300-350
г/квт-ч.
Повышение
кпд, экономия топлива и уменьшение топливной составляющей эксплуатационных
расходов обычно сопровождаются удорожанием оборудования и увеличением капиталовложений.
Выбор оборудования КЭС, параметров пара и воды, темп-ры уходящих газов
котлоагрегатов и т. д. производится на основе технико-экономич. расчётов,
учитывающих одновременно капиталовложения и эксплуатац. расходы (расчётные
затраты).


Осн. оборудование
КЭС (котельные и турбинные агрегаты) размещают в гл. корпусе (рис. 2),
котлы и пылепригото-вит. установку (на КЭС, сжигающих, напр., уголь в виде
пыли) - в котельном отделении, турбоагрегаты и их вспомогательное оборудование
- в машинном зале электростанции. На КЭС устанавливают преим. по
одному котлу на турбину. Котёл с турбоагрегатом и их вспомогат. оборудование
образуют отд. часть - мо-поблок электростанции. Для турбин мощностью 150-1200
Мвт требуются котлы производительностью соответственно 500-3600 т/ч
пара.
Ранее на ГРЭС применяли по два котла на турбину, т. е. дубль-блоки (см.
Блочная
тепловая электростанция).
На КЭС без промежуточного перегрева пара
с турбоагрегатами мощностью 100 Мвт и меньше в СССР применяли неблочную
централизованную схему, при к-рой пар из котлов отводится в общую паровую
магистраль, а из неё распределяется между турбинами. Размеры гл. корпуса
определяются размещаемым в нём оборудованием и составляют на один блок,
в зависимости от его мощности, по длине от 30 до 100 м, по ширине
от 70 до 100 м. Высота машинного зала ок. 30 м, котельной
-50 м и более. Экономичность компоновки гл. корпуса оценивают приближённо
удельной кубатурой, равной на пылеугольной КЭС ок. 0,7-0,8 м3/квт,
а
на газомазутной - ок. 0,6-0,7 м3/квт.Часть вспомогат.
оборудования котельной (дымососы, дутьевые вентиляторы, золоуловители,
пылевые циклоны и сепараторы пыли системы пылепри-готовления) устанавливают
вне здания, на открытом воздухе.


В условиях
тёплого климата (напр., на Кавказе, в Ср. Азии, на Ю. США и др.), при отсутствии
значит, атм. осадков, пылевых бурь и т. п., на КЭС, особенно газомазутных,
применяют открытую компоновку оборудования. При этом над котлами устраивают
навесы, турбоагрегаты защищают лёгкими укрытиями; вспомогат. оборудование
турбоустановки размещают в закрытом конденсационном помещении. Удельная
кубатура гл. корпуса КЭС с открытой компоновкой снижается до 0,2-0,3 м3/квт,
что
удешевляет сооружение КЭС. В помещениях электростанции устанавливают мостовые
краны и др. грузоподъёмные механизмы для монтажа и ремонта энергетич. оборудования.


КЭС сооружают
непосредственно у источников водоснабжения (река, озеро, море); часто рядом
с КЭС создают пруд-водохранилище. На территории КЭС, кроме главного корпуса,
размещают сооружения и устройства технич. водоснабжения и химводоочистки,
топливного х-ва, электрич. трансформаторы, распределительные устройства,
лаборатории и мастерские, материальные склады, служебные помещения для
персонала, обслуживающего КЭС. Топливо на территорию КЭС подаётся обычно
ж.-д. составами. Золу и шлаки из топочной камеры и золоуловителей удаляют
гидрав-лич. способом. На территории КЭС прокладывают ж.-д. пути и автомоб.
дороги, сооружают выводы линий электропередачи, инженерные наземные
и подземные коммуникации. Площадь территории, занимаемой сооружениями КЭС,
составляет, в зависимости от мощности электростанции, вида топлива и др.
условий, 25-70 га.


Крупные пылеугольные
КЭС в СССР обслуживаются персоналом из расчёта 1 чел. на каждые 3 Мвт
мощности
(примерно 1000 чел. на КЭС мощностью 3000 Мвт); кроме того, необходим ремонтный
персонал.


Мощность отд.
КЭС ограничивается водными и топливными ресурсами, а также требованиями
охраны природы; обеспечения нормальной чистоты возд. и водного бассейнов.
Выброс с продуктами сгорания топлива твёрдых частиц в воздух в районе действия
КЭС ограничивают установкой совершенных золоуловителей (электрофильтров
с кпд ок. 99% ). Оставшиеся примеси, окислы серы и азота рассеивают сооружением
высоких дымовых труб для вывода вредных примесей в более высокие слои атмосферы.
Дымовые трубы высотой до 300 м и более сооружают из железобетона
или с 3- 4 металлич. стволами внутри железобетонной оболочки или общего
металлич. каркаса.


Управление
многочисл. разнообразным оборудованием КЭС возможно только на основе комплексной
автоматизации производств, процессов. Совр. конденсационные турбины полностью
автоматизированы. В котлоагрегате автоматизируется управление процессами
горения топлива, питания котлоагрегата водой, поддержания темп-ры перегрева
пара и т. д. Осуществляется комплексная автоматизация др. процессов КЭС,
включая поддержание заданных режимов эксплуатации, пуск и остановку блоков,
защиту оборудования при ненормальных и аварийных режимах. С этой целью
в системе управления на крупных КЭС в СССР и за рубежом применяют цифровые,
реже аналоговые, управляющие электронные вычислит, машины.


Лит.: Гельтман
А. Э., Будняцкий Д. М., Апатовский Л. Е., Блочные конденсационные электростанции
большой мощности. М.- Л., 1964; Р ы ж-кин В. Я., Тепловые электрические
станции, М.- Л., 1967; Шредер К., Тепловые электростанции большой мощности,
пер. с нем., т. 1 - 3, М.- Л., 1960 - 64; Скротцки Б.-Г., Вопат В.А., Техника
и экономика тепловых электростанций, пер. с англ., М.- Л., 1963.

В. Я. Рыжкин.


А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я